AT Physics \diamond Center of Mass Problems

1. Find the center of mass of a square uniform lamina with a circular hole in it, as shown to the right. Assume each side to have a length $2 a$ and the hole to have a radius $a / 2$.

2. A rod of length l lies along the x axis with one end at the origin. Assume that the mass per unit length λ of the rod is given by $2 m x / l^{2}$.
a) Find by integration the total mass of the rod.
b) Find by integration the x coordinate of its center of mass.
c) Is there any relationship between this problem and that of finding the c.m. of a uniform right triangle?
3. Using the result that the center of mass (called centroid in mathematics) of a right triangle is one-third of the way up from each of the two perpendicular sides, show that the center of mass of a scalene triangle is along a line parallel to each base a distance of one-third of the altitude drawn from that base. This result is equivalent to the statement that the centroid of a triangle is at the intersection of the medians drawn to each
 side a distance two-thirds the distance from each vertex to the midpoint of the opposite side.
